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Properties of DNA in the far Infrared

S.M. Lindsay
Department of Physics
K Arizona State University

Tempe, AZ 85287
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Abstract Z - q S
We have carried out trahsmission measurements as a
F function of power faor DNA films irradiated near the absorption
: maximum at 43/¥m‘1'using the Santa Barbara Free Electron Laser.
g Initial results show no non-lingaf\effects, such as bleaching, up

to power densitieg of a few kW/tm4.

An experimenf to search for unstacking of DNA bases when the
molecule is expdsed to intense radiation near the 'melting mode’
frequency (~80 cm™~) is nearing completion: exposure to available
FEL power does not cause significant heating of the solution.

Phonon amg}ng mechanisms are being investigated in the range
0.1 to 200/cm™+ by both Raman and Brillioun spectroscopy
measurements made as a function of temperature and mode
p frequency. Coupling to relaxational motion of the hydration shell
L appears to be the main damping mechanism. At low (GHz.)

' frequencies, Debye~like reorientation of the bound water
dominstes the loss process, while at much higher frequencies
(~1012 Hz), the hydrogen-bond breaking relaxations may
contribute.
.
Transmission of DNA films in the far infrared

DNA films have most unusual optical properties, associated in
some way with the DNA-counterion interactiont. Since counterions
are involved in the low frequency motions of the polymer<, it is

! interesting to investigate the possibility that DNA is a non-
linear material in the far infrared. We have made transmission

N measurements as a function of incidernt power at the 43 cm'1

" absorption maximum3 (the far infrared absorption of a dry film is

) shown in Figure la - the FEL frequency used is marked by an

, Arrow.

3 The experimental arrangement is shown in Figure 1lb. A
pyroelectric detector (PED1l) monitors the incoming power via the

" mylar baamsplitter BSL. Mirvrors ML and M2 focus the beam onto the

. sample and back anto the second dntector PED2. The ocutput of each

) tercotor s storod inoa boxcav triggored by the FEL. The FEL was
creraredl inoan unseable mode, giving 1ise to wide powey

\ varitations from pulse to pnlse (2ach pulse was approximately
gaussian with a Fwill of about 1 xs and a maximum encrgy of 40C

} pd) . The sample was sandwiched botween twe fused silica slides

1
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(which accounted for about 30% transmission loss). The remaining
loss of about 50% _was consistent with the transmission measured
by Wittlin et al.3. The sample was moved to several different
positions about the focus (displacement marked as § on Figure 1lb)
to check for interference effects.

We have yet to analyze the data from this experiment, but the
uncalibrated output from one run is shown in Figure 1lc. The
transmission appears to be linear.

Heating measurements with the athermal melting apparatus

A first step in our experiment to search for base unstacking
as non-equlibrium phonons are pumped near the 'melting’ mode
frequency is to determine the thermal heating of the buffer
solution by the FEL. For this purpose, we operated the absorption
cell (fabricated from single crystal quartz) in one arm of an
optical interferometer as shown in Figure 2., A probe beam is
split off by BS1l, and recombined with the reference beam by BS2
to form an interference fringe system on the pinhole, PH. When
fluid in the cell is heated, the fringes sweep past PH, causing
oscillations on the output of a photodetector, PD. The system was
tested by heating the cell directly, and the calculated
sensitivity of about 3 fringes per degree confirmed. The probe
beam was positioned within about 2 uym of the window exposed to
the FEL, with a beam waist no larger than about 2 uym over the
probe fegion. When exposed to the maximum available FEL power at
43 cm™* (400 pJ in 1 wus), less than 0.05 fringe motion was
detected, corresponding to no more than about 0.1° of heating.
(The temperature is monitored dynamically by recording the output
on a boxcar integrator with about 20 ns overall response time.)

This upper 1imit of heating would be no more than a factor 2
worse at 80 cm™ if the same power were available from the FEL

At the time of writng, the FEL has been brought into
operation at the desired higher frequency, although the available
power is rather limited. Therefore we plan to duplicate the
proposed phonon-pumping experiments using a molecular vapor laser
set up at the FEL facility at UCSB. Using ammonia vapor,
approximately 4000 xJ is available at 80 cm~! as 200 ns pulsesS.

Damping of phonons in DNA

We have reported our Brillioun studies of phonon damping by
the hydration shell elsewhere®:7, Briefly, damping is controlled
by relaxation of the bound water which results in the possibility
of resonant motion in dissolved DNA at much lower frequencies
than might otherwise be ecxpected 1f the DNA were damped by the

motion of ‘classical’ water9. we nave extended this work to a
wide carioty of hydration conditicns. Figure 3 shows typical
phonon leacs data ve. troquency (nen vef. 7 for details) for
samples between 0% and 95% v.h. {(the solid lines are calculat=d).
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We find that the loss process builds up in intensity in
proportion to the number of molecules in the primary hydration
shell (a number we have obtained by extendeing the Raman
measurements described elsewhere?). The timescale and activation
K energy of the loss process corresponds to the Debye relaxation
\ time and the activation energy which might be expected for
N reorientation of the bound water, so the loss mechanism is
presumably coupling to simple reorientation of the molecules in
the primary shell (excluding the first 5 most tightly bound at
the phosphates).

We have also gained some insight into loss mechanisms in the
wavenumber region by examining the low frequency Raman spectra of

STl e i T

y single-crystal oligonucleotides (samples provided by W.L.
A Peticolas). The really striking feature of these spectra is their
- similarity to the fiber spectra taken with sample of natural DNA.
. Sample spectra are shown in Fiqgure 4a (Na-DNA, Calf Thymus film,
86% r.h.) and 4b (d(CGCGAATTCGCG),). The solid lines are least
A squares fits. The data for a number of samples are summarized in
. Table I below.
N Sample Location ?ffbands (v) wWidth of bands (f) a/v
0 (cm™ (half width cm
} Li-DNA 18 7.5 0.42
N (CT film, 49 23 0.47
\ 88% r.h.) 85 29 0.34
. Na-DNA 21.2 8.4 0.4
. (CT film, 34 7 0.21
86% r.h.) 58 16 0.28
- 88.4 34 0.38
)
d(CGCGAA 20.5 7.5 0.37
TTCGCG) 47 22 0.47
\ 89 25 0.28
d(GGTATA 12.5 3.3 0.26
ceC) 21 18 0.86
57 27 0.47
107 28 0.26
[}
Table 1
‘ Location and widths of a number of low lying Raman bands
A
U
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What little data we have on the temperature dependence of these
widths suggests that they may not be soley a consequence of very
anharmonic phonons. There is a possibility that they arise from
relaxational coupling to a fast water mode (hydrogen-bond
breaking) and we are investigating this with further temperature
studies.

We note, in closing, that the Raman linewidths measure the

phonon dephasing time (if they are not inhomogeneously
broadened), w51§e the non-equilibrium effects needed for athermal

melting of the double helix presumably require a long population
lifetime. The two lifetimes may be very different. We Eope to
establish some limits with CARS pump and time delayed-probe
measurements currently in hand.
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FLOPRE 30 Normaltized phonen Tionewidtiis vs. phonon 1reguencey tor sampie:

at variovus relative humidities. The data (points) and theoretical curves

are arbitrarily displaced vertically for clarity. The data points are:
0Z r.h. (#), 23% r.h. (4), 457 r.h. (#), S97 r.h. (¥), 807 r.h. (&),
867 r.h. (¢), 937 r.h. (&) and 957 r.h. (&@). The data are for phonon
propagation perpendicular to the helix axis.
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FIGURE 4a. Low frequency Raman spectrum of an Na-DNA film (calf thymus)

at 867 r.h.
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FIGURE 4b. Low frequency Raman spectrum of d(CGCGAATTCGCG) .
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